Page 19 sur 25
Replace, remove, edit with conditions
Replace empty cells
df['speciality'] = df['speciality'].fillna('Other')
Replace a value (the full value)
df['Your field'] = df['Your field'].replace(['Old value'],'New value')
Replace a part of a string using regex
df['Your field'] = df['Your field'].replace({'Old value': 'New value'}, regex=True)
Replace a part of a string using regex and ignoring the case
df['Your field'] = df['Your field'].replace({'OlD valUe': 'New value'}, regex=True, case=False)
Replace a string if it contains
df.loc[df['speciality'].str.contains('Researcher'), 'speciality'] = 'Research Scientist'
If not contains
Add ~
:
df.loc[~df['speciality'].str.contains('Researcher'), 'speciality'] = 'Research Scientist'
Replace comma with point
df['myField'] = df['myField'].replace({'(?<=\d),(?=\d)': '.'}, regex=True)
Localize and remove rows
ind_drop = df[df['Your field'].apply(lambda x: x == ('A value'))].index df = df.drop(ind_drop)
Localize and remove rows starting with ...
ind_drop = df[df['Your field'].apply(lambda x: x.startswith('A value'))].index df = df.drop(ind_drop)
Localize and remove rows ending with ...
ind_drop = df[df['Your field'].apply(lambda x: x.endswith('A value'))].index df = df.drop(ind_drop)
Localize and replace full rows
df.loc[(df['A field'] == 'TARGET')] = [[NewValue1, NewValue2, NewValue3]]
Localize rows according a regex and edit another field
df.loc[df['Field1'].str.contains(pat='^place ', regex=True), 'Field2'] = 'Yes'
Replace a field with values from another field with a condition
df['Field1'] = np.where(df['Field1'] .apply(lambda x: x.startswith('A string in condition...')), df['Field2'], df['Field1'])
Remove some first characters
Here we delete the 2 first characters if the cell starts with a comma then a space.
df['Field'] = df['Field'].apply(lambda x: x[2:] if x.startswith(', ') else x)
Keep only some first characters
df['Field'] = df['Field'].apply(lambda x: x[:10])
Remove some last characters
df['DateInvoice'] = df['DateInvoice'].apply(lambda x: x[:-4] if x.endswith(' UTC') else x)
Remove the content from a field in another field
df['NewField'] = df.apply(lambda x : x['FieldToWork'].replace(str(x['FieldWithStringToRemove']), ''), axis=1)
Or with a regex, example to remove the content only if it is at the beginning of the field:
df['NewField'] = df.apply(lambda x : re.sub('^'+str(x['StringToRemove']), '', str(x['FieldToWork'])) if str(x['FieldToWork']).startswith(str(x['StringToRemove'])) else str(x['FieldToWork']), axis=1)
Edit with a condition
Increment a field if another field is empty.
df.loc[df['My field maybe empty'].notna(), 'Field to increment'] += 1
Fill a field if a field is greater or equal to another field.
df.loc[df['Field A'] >= df['Field B'], 'Field to fill'] = 'Yes'
Edit several fields in the same time.
df.loc[df['Field A'] >= df['Field B'], ['Field A to fill', 'Field B to fill']] = ['Yes', 'No']
Edit with several conditions
Condition "AND" (&
)
df.loc[(df['My field maybe empty'].notna()) & (df['An integer field'] == 1) & (df['An string field'] != 'OK'), 'Field to increment'] += 1
Please replace "&" with a simple &
.
Condition "OR" (|
)
df.loc[(df['My field maybe empty'].notna()) | (df['An integer field'] == 1) | (df['An string field'] != 'OK'), 'Field to fill'] = 'Yes'
Edit with IN
or NOT IN
condition (as SQL)
Just use isin
:
df.loc[df['Id field'].isin([531733,569732,652626]), 'Filed to edit'] = 'Yes'
And for NOT IN
:
df.loc[df['Id field'].isin([531733,569732,652626]) == False, 'Filed to edit'] = 'No'
Replace string beginning with
df['id_commune'] = df['id_commune'].str.replace(r'(^75.*$)', '75056', regex=True)
Not start with
~df[phone].str.startswith('A')
Or:
~df[phone].str.startswith(('A', 'B'))
Remove letters
df['mobile'] = df['mobile'].str.extract('(\d+)', expand=False).fillna('')
Extract before or after a string
Example if Job='IT: DBA'
df['type'] = df['Job'].str.split(': ').str[0] df['speciality'] = df['Job'].str.split(': ').str[1]
Remove all after a string
df_Files['new field'] = df_Files['old field'].str.replace("(StringToRemoveWithAfterToo).*","", regex=True)
Remove all before a string
df_Files['file'] = df_Files['file'].str.replace("^.*?_","_", regex=True)
Get in title case
df['firstname'] = df['firstname'].str.title()
Remove if contains less of n character (lenght)
df.loc[df['mobile'].str.len() < 6, 'mobile'] = ''
Remove potential spaces before and after a string (trim)
Use .str.strip()
, example:
df.loc[df['My field'].astype(str).str.isdigit() == False, 'My field'] = df['My field'].astype(str).str.strip()
Remove with a function (def)
def MyDeletion(): # Eventually if your df does not exist when you create the function # global df ind_drop = df[df['My field'].apply(lambda x: x == ('My value'))].index df = df.drop(ind_drop) ... MyDeletion()
Decode HTML special char
import html df['My field'] = df['My field'].apply(lambda x: html.unescape(x))